
Efficiently Computing and Updating Triangle Strips for Real-Time
Rendering

Jihad El-Sanayz Francine Evansyx Aravind Kalaiahy

Amitabh Varshneyy Steven Skienay Elvir Azanliy

Abstract

Triangle strips are a widely used hardware-supported data-structure to compactly represent and ef-
ficiently render polygonal meshes. In this paper we survey the efficient generation of triangle strips
as well as their variants. We present efficient algorithms for partitioning polygonal meshes into trian-
gle strips. Triangle strips have traditionally used a buffer size of two vertices. In this paper we also
study the impact of larger buffer sizes and various queuing disciplines on the effectiveness of trian-
gle strips. View-dependent simplification has emerged as a powerful tool for graphics acceleration in
visualization of complex environments. However, in a view-dependent framework the triangle mesh
connectivity changes at every frame making it difficult to use triangle strips. In this paper we present
a novel data-structure, Skip Strip, that efficiently maintains triangle strips during such view-dependent
changes. A Skip Strip stores the vertex hierarchy nodes in a skip-list-likemanner with path compression.
We anticipate that Skip Strips will provide a road-map to combine rendering acceleration techniques for
static datasets, typical of retained-mode graphics applications, with those for dynamic datasets found in
immediate-mode applications.

1 Introduction

Recent advances in three-dimensional acquisition, simulation, and design technologies have led to genera-
tion of datasets that are beyond the interactive rendering capabilities of current graphics hardware. Several
software and algorithmic solutions have been recently proposed to bridge the increasing gap between hard-
ware capabilities and the complexity of the graphics datasets. These include level-of-detail rendering with
multi-resolution hierarchies, occlusion culling, and image-based rendering. Graphics rendering has also
been accelerated through compact representations of polygonal meshes using data-structures such as trian-
gle strips and triangle fans.

Although each triangle can be specified by three vertices, but to maximize the use of the available data
bandwidth, it is desirable to order the triangles so that consecutive triangles share an edge. Such ordered
sequences of triangles are referred to astriangle strips. Using such an ordering, only the incremental change
of one vertex per triangle need be specified, potentially reducing the rendering time by a factor of three by
avoiding redundant transformation, clipping, and lighting computations. Besides, such an approach also has
obvious benefits in compression for storing and transmitting models. In Section 2 we overview the previous
work done in generation of triangle strips, include some variations to the simple model of a triangle strip as

yDepartment of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
zDepartment of Mathematics & Computer Science, Ben-Gurion University, Beer-Sheva, 84105, Israel
xSchlumberger, 5599 San Felipe, Houston, TX 77056, USA

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Efficiently Computing and Updating Triangle Strips for Real-Time

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science,State University of New York at Stony
Brook,Stony Brook,NY,11794

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

27

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

outlined above. In Section 3 we consider the problem of constructing good triangle strips from polygonal
models and present several possible approaches.

Recently, view-dependent simplifications have been introduced to enable fine-grained changes to mul-
tiresolution hierarchies that depend on parameters such as view location, illumination, and speed of motion.
Such simplifications change the mesh structure at every frame to adapt to just the right level of detail nec-
essary for visual realism. One drawback of such schemes is that they make it difficult to take advantage of
hardware-supported mechanisms for graphics acceleration, such as triangle strips. Luebke and Erikson [27]
point out that view-dependent simplification being an immediate-mode technique has a relative disadvan-
tage since most current graphics hardware takes advantage of retained-mode representations such as display
lists that have static geometry and connectivity. To overcome this drawback Hoppe [23] has proposed a
solution to compute triangle strips per frame for the view-dependent simplification specific to that frame.
In Section 5 we present Skip Strips as a solution to this dichotomy of immediate-mode simplifications and
retained-mode hardware-supported acceleration.

The results of our approaches are presented in Section 6. Special-purpose rendering hardware is needed
to fully exploit the advantages of triangle strips, by maintaining a buffer with thek previously transmitted
vertices as determined by a certain queuing discipline. Although current rendering engines use a buffer of
size ofk = 2 and FIFO queuing discipline, there has been recent interest in studying the impact of larger
buffer sizes, for both rendering [4] and geometric compression [9] Towards this end, we provide extensive
analysis of the impact of buffer size and queuing discipline on triangle strip performance in Section 6.2.
We demonstrate that relatively small buffer sizes are sufficient to achieve most of the potential benefits
of triangle strips, making for a desirable tradeoff between increasing hardware cost versus the speedup in
rendering time. This paper presents a summary of research in [14, 11] in an archival form and augments it
with a survey of the area of triangle strips and its variants.

2 A Brief Survey of Triangle Strips and Related Data-Structures

Triangle strips provide a compact representation of triangular meshes and are supported by several graph-
ics APIs including OpenGL [31, 32]. Triangle strips enable fast rendering and transmission of triangular
meshes. An example triangle strip in the model of a cow is shown in Figure 1. The set of triangles shown
in Figure 2(a) can be compactly represented by a triangle strip(1; 2; 3; 4; 5; 6), where theith triangle is
described by theith, (i + 1)st, and(i+ 2)nd vertices in this sequence. Such triangle strips are referred to
assequential triangle strips. A sequential triangle strip allows rendering ofn triangles using onlyn + 2
vertices instead of3n vertices. This results in substantial savings for memory bandwidth and computation
of per-vertex operations such as transformations, lighting, and clipping.

Sequential triangle strips cannot however represent general sequences of triangles, such as the one shown
in Figure 2(b). To represent such triangle sequences, the notion of triangle strips has been extended to
generalized triangle stripswhere the two vertices of the previous triangle can be swapped. This can be
also simulated by repeating vertices. Thus, the triangle sequence in Figure 2(b) can be represented as
(1; 2; 3; 4; 5; 4; 6; 7).

Akeleyet al. [1] have developed a program that constructs generalized triangle strips for a given triangle
mesh model [1]. This algorithm seeks to create triangle strips that tend to minimize leaving isolated triangles.
It is a greedy algorithm, which always chooses as the next triangle in a strip the triangle that is adjacent to the
least number of neighbors (i.e. minimizes the number ofadjacencies). When there is more than one triangle
with the same, least number of neighbors, the algorithm looks one level ahead to its neighbors’ neighbors,
and chooses the direction of minimum degree, choosing arbitrarily if there is again a tie. After starting from
an arbitrary lowest degree triangle, it extends its strips in both directions, so that each strip is as long as
possible. There is no reluctance to generate swaps, and understandably so, since this algorithm was aimed

2

Figure 1: A triangle strip in a cow model

1

2

3

4

5 1

2

3

4

5

7

1 2 3 4 5 6

6 6

1 2 3 4 5 4 6 7
(a) (b)

Figure 2: Examples of (a) Sequential and (b) Generalized triangle strip

at generating triangle strips for Iris GL in which the cost for a swap was just one bit. A fast, linear-time
implementation of this algorithm is obtained by using hash tables to store the adjacency information, linked
to a priority queue maintaining strip length to choose which triangle starts a new strip. Speckmann and
Snoeyink [35] have computed the triangle strips for triangulated irregular networks by creating a spanning
tree of the dual graph of the TIN and then traversing the tree in a modified depth-first fashion. More
recently, Xianget al. [40] have presented a triangle stripping algorithm that computes a spanning tree of
the dual graph of a triangulation, partitions this tree into triangle strips, and then concatenates these triangle
strips into larger strips.

Within computational geometry, interest has focused on constructing and recognizing Hamiltonian and
sequential triangulations. A triangulation isHamiltonianif its dual graph contains a Hamiltonian cycle.
Hamiltonian triangulations can be represented by using generalized triangle strips (triangle strips with
swaps). Arkin,et.al. [3] proved that every point set has a Hamiltonian triangulation. Further, they showed
that the problem of testing whether a triangulation is Hamiltonian is NP-complete. They gave anO(n2) al-
gorithm for constructing a Hamiltonian triangulation of a polygon that has since been improved toO(n lgn)
by Narasimhan [29].

A triangulation issequentialif its dual graph contains a Hamiltonian cycle whose turns alternate left-
right. Sequential triangulations can be represented by using one triangle strip without any swaps. A Hamil-
tonian triangulation is sequential if three consecutive edges do not share a common vertex. Arkin, et.al. [2]
proved that for anyn � 9 there exists a set ofn points in general position that do not admit a sequential
triangulation. Although linear time suffices to test whether a triangulation is sequential, we have proved that
the problem of finding a sequential triangulation of a partially triangulated surface is NP-complete using a
reduction from 3-satisfiability [15]. Hence, heuristics such as those described in this paper are required to
find good sequential strips.

3

A simple path in the dual of a triangulation identifies a sequence of triangles that form a “strip” or a
(triangular) “ribbon” . Bhattacharya and Rosenfeld [5] have studied geometric and topological properties
of ribbons. The Hamiltonian triangulation problem can be considered that of identifying if a set of points
or a polygon has a triangulation that consists of a single strip (triangular ribbon). Bose and Toussaint [6]
have recently studied a set of problems involvingquadrangulationof point sets, and have obtained several
interesting results. A quadrangulation of a point setS is a decomposition of the convex hull into quadrilat-
erals, such that each point ofS is a vertex of some quadrilateral. In particular, they have applied the notion
of Hamiltonian triangulations to this problem, and they have obtained an alternate method of computing
Hamiltonian path triangulations.

Although a triangle strip helps in avoiding the repeated processing of vertices that belong to shared edges
inside the strip (such as edges(2; 3); (3; 4); and(4; 5) in Figure 2(a)), the edges that occur on the sides of
such a strip (for instance, edges(2; 4); (4; 6); (1; 3) and(3; 5) in Figure 2(a)) represent sets of vertices that
could be repeated in adjacent triangle strips. Traditional triangle strips have operated with a buffer size of2
vertices. If a large buffer size is allowed the repetition is reduced because older vertices can now be re-used.
By Euler’s theorem on graphs, the number of triangles in a triangulation is at most twice the number of
vertices, and on average we will have to send each vertex twice to the renderer using sequential triangle
strips and a buffer of size 2.

The decomposition of a triangular mesh into a triangle-strip data-structure that back-references the pre-
viousk vertices,k � 2 is referred to as ageneralized triangle mesh[9]. Deering has proposed the use of
generalized triangle meshes for compressing connectivity information in geometric polygonal models [9].
He has proposed maintaining a stack of sizek = 16 to store16 previous vertices. A vertex for a new trian-
gle is specified either through back-referencing one of the existing vertices on the stack, or by reading-in a
new vertex and replacing an existing vertex on the stack. Although a novel idea, no algorithms have been
proposed there to suggest how one can decompose polygonal models into generalized triangle meshes for a
given buffer sizek. Chow [7] presents local and global algorithms for converting triangular and polygonal
meshes into generalized meshes. The local algorithm proceeds by starting from the mesh boundary and
successively peeling off triangle strips outwards in. The length of the strip is based on buffer sizek. The
global algorithm presented there is based on our global algorithm for patchification [14] and detailed in
Section 3. More recently Hoppe [24] has proposed a greedy triangle-strip growing algorithm that performs
vertex caching in a transparent manner. It creates greedy triangle strips in a manner similar to Akeley et
al. [1] but then cleverly uses the cache size information to break strips before they become too large and
make vertex reuse difficult.

Mitra and Chiueh [28] have studied the effect of increasing the buffer size on reducing the repetition of
vertices. Mitra and Chiueh however use an encoding scheme that differs from the triangle-strip specification
scheme. They encode the mesh using two buffers –current frontierandnext frontierand use a breadth-first
traversal scheme to update these buffers. A triangle is rendered using vertices from the two buffers. Their
results show that they can use a64-vertex buffer and have less than8% repetition of vertices. Their empirical
results on several meshes ranging from3; 000 to 40; 000 triangles suggest that the size of the vertex buffer
required is independent of the mesh size.

Bar-Yehuda and Gotsman [4] studied the extent to which we can increase the stack (buffer) size to re-
duce this duplication of vertices. This yields a time-versus-space tradeoff; as we increase memory usage,
rendering time will decrease. Bar-Yehuda and Gotsman have shown that a buffer of size13:35

p
n is suffi-

cient to render any mesh onn vertices in the optimal timen, and that a buffer size of1:649
p
n is necessary

for optimal rendering in the worst-case. They show the problem of minimizing the buffer-size for a given
mesh is NP-hard, using a reduction from the problem of finding minimum separators of a planar graph.

Triangle strips can be viewed as a method to compress the connectivity information in a triangle mesh.
Several papers have been published that provide better alternatives than the approach of converting polyg-

4

onal models to triangle strips [22, 37, 20, 34]. For a good survey of such techniques, the interested reader
should refer the survey by Rossignac [34].

Much less work has been done in integrating triangle strips with multiresolution rendering. Duchaineau
et al. [10] have proposed performing incremental view-dependent sequential triangle strips for terrains.
Their underlying mesh representation is a triangle bintree and as triangles are split or merged, these changes
are reflected in the triangle strips for the previous frame. These updated triangle strips are then re-linked
to generate longer strips. Velhoet al. [38] have proposed an elegant technique that generates a recursive
hierarchy of triangle strips for uniform or adaptive tessellations of implicit and parametric patches. Their
method generates triangle-strips that cover the original patch using a variant of space-filling curves.

3 Constructing Efficient Triangle Strips

In this section, we propose several heuristics for constructing triangle strips from polygonal models. There
are at least three different objectives such heuristics might reasonably seek to achieve:

� Maximize the length of each strip– since each strip of lengths representss� 2 triangles, maximizing
strip length minimizes this overhead.

� Minimize swaps– since each swap costs one additional vertex in the OpenGL cost model.

� Minimize the number of singleton strips– since each triangle left isolated after removing a strip creates
a singleton strip, we should seek to begin and end our strips on low-degree faces of the triangulation.

We have experimented with several variants of local and global algorithms, as discussed in the following
two sub-sections.

3.1 Local Algorithms

Our class of local heuristics starts from the same basic idea as [1] – to use least adjacencies as the basis
for choosing the next face in a strip. However, we have tried to improve upon their algorithm by dynamic
triangulation and alternate tie-breaking procedures. We have considered three different approaches to trian-
gulating faces:

� Static triangulation– In this approach, we triangulate all quads and larger faces in our model as a
pre-processing step before we begin finding strips. We use alternate left-right turns, as shown in
Figure 3(b) because such a triangulation is inherently sequential, as opposed to the simpler and more
conventional fan triangulation.

Figure 3: Fan versus sequential triangulation of a convex polygonal face.

5

� Dynamic whole-face triangulation– A second approach completely triangulates each face when we
first enter it via some edge on a strip. After using one of the tie-breaking procedures described below
to determine the exit edgee, we can triangulate the face as sequentially as possible while exiting at
e. If the surface normals do not vary across a face, then whole face triangulation has the additional
advantage of encoding fewer normal transitions.

� Dynamic partial-face triangulation– Partial-face triangulation provides the freedom to triangulate
and walk only part of a face before exiting it. This approach can under certain conditions provably
perform better than the whole-face triangulation, as is seen in the example where we represent a cube
using a single sequential triangle strip. After identifying the exit edgee of the face with the minimum
number of adjacencies, we sequentially triangulate the smallest portion possible of the face from the
input edge to exit ate. This is illustrated in Figure 4.

Whole

1
2

12

Partial

1
2

122

1
2

1

13 2

Input

Figure 4: Examples of partial and whole-face triangulation.

We have considered several different approaches in breaking ties when there is more than one polygon
that has the least number of adjacencies to the current face. Such ties often occur since the possible number
of adjacencies ranges only over 1, 2, and 3. In particular, we tried:

� Arbitrary – meaning that we use the first face found among the low-adjacency faces.

� Look-ahead– this is the same approach that algorithm presented in [1] takes, as described above.

� Alternate– this rule tries to alternate directions in choosing the next polygonal face. To motivate this
option, note that sequential strips alternate directions.

� Random– chooses the next face randomly from those that were tied.

� Sequential– chooses the next face that will not produce a swap, and picks randomly if there is no
such face.

To quickly identify the lowest adjacency face to start from, we maintain a priority queue ordered by the
number of adjacent polygons to each face. The faces in the priority queue are linked to the adjacency list
data structure representing the dual graph of the triangulation. This enables fast lookup to find and delete
faces when forming the triangle strips.

3.2 Global Algorithms

Although the problem of finding the strip-minimal triangulation is NP-complete, we perform a global anal-
ysis of the structure of a polygonal model using a technique we callpatchification, which we believe is of
independent interest. In typical polyhedral models, there are many quadrilateral faces, often arranged in

6

large connected regions. We attempt to find large “patches”, rectangular regions consisting only of quadri-
laterals, as illustrated in Figure 5. These patches can be triangulated sequentially alongeach row or column,
although there is a cost of either 3 swaps per turn or 2 vertices to stop and restart each strip at the end of a
row or column.

Figure 5: Patchification finds large rectangular patches of quadrilaterals.

Efficient patchification requires computing the number of polygons to the east, west, north, and south
of each face, and making sure that when forming the patches, the polygons in the patch are all adjacent.
Hence, we have to “walk” through the faces and calculate the number of adjacent polygons to them in each
orientation. Each “walk” only visits each face exactly 2 times: once for the north-south direction and once
for the east-west direction; once we visit a face in a walk, that face does not require visiting again. To avoid
generating too many small patches, we keep apatch cutoff sizewhich is the area of the smallest patch we
would like to generate. Since we generate patches in decreasing order of size, we can conveniently stop
the process once the areas of the patches being generated falls below this cutoff size. This approach takes
us timeO(pn) wherep is the number of patches found. In our studiesp was much smaller thann and
therefore this approach demonstrated a linear behavior. We tried two different approaches for exploiting the
coherence identified in large patches:

� Row or column strips– After selecting all patches whose size was greater than a specified cutoff
size, we partitioned the patches into sequential strips along rows or columns (whichever direction
yielded larger strips) and deleted them from the model. Next, a local algorithm (using whole-face
triangulation) was used on the remaining model. By generating one strip along each row or column,
we minimize the number of swaps needed.

� Full-patch strips– Each patch larger than the cutoff size was converted into one strip, at a cost of
3 swaps per turn. Further, every such strip was extended backwards from the starting quadrilateral
and forwards from the ending quadrilateral of the patch to the extent possible. As before, the local
algorithm was used on the model left after removing the patches and their forward and backward
extensions.

The results of our experiences with these heuristics are discussed in Section 6.1. In our experiments we
found that row or column strips for patchification performed better than full-patch strips and partial-face
triangulation better than whole-face triangulation. Also, sequential method of breaking ties was found to be
the best for minimizing the number of vertices to be sent.

4 Issues in Integrating Triangle Strips with Multiresolution Hierarchies

Thus far we have considered strategies for generating triangle strips in environments where each object is
represented at a single resolution; the geometry and the connectivity for the object is static. However, use of

7

multiresolution hierarchies in level-of-detail-based rendering schemes for real-time graphics environments
is becoming increasingly common these days. There are two kinds of multiresolution hierarchies –discrete
andcontinuous. The discrete multiresolution hierarchies involve computing a fixed number (usually under
10) levels of detail for an object. Perceptually important objects in a visual scene are then rendered using
higher levels of detail and perceptually unimportant objects are rendered using lower levels of detail [16].
Such schemes are useful for applications where the perceptual importance varies significantly from one
object to another, but not across the same object. However, in several applications, the perceptual importance
varies significantly across the same object. Examples include flying over a single terrain object, visualizing
a connected iso-surface, and examining a single protein molecule. In such cases it is important to vary
the detail across different regions of the same object. Such changes in detail have to be continuous across
an object and require multiresolution hierarchies that can generate them on the fly based on view- and
scene-parameters. For discrete multiresolution hierarchies, triangle strips can be computed once per level
of detail as a pre-process using techniques outlined above in Section 3. However, such solutions do not
extend to continuous multiresolution hierarchies. In Section 5 we present a solution for efficiently updating
triangle strips in presence of connectivity changes that accompany view-dependent modifications based on
continuous multiresolution hierarchies. To better explain our approach, we next give a brief overview of
view-dependent simplification and efficient traversal of pointers in data-structures.

4.1 View-Dependent Simplifications

Most of the previous work on generating multiresolution hierarchies for level-of-detail-based rendering has
concentrated on computing a fixed set of view-independent levels of detail. At runtime an appropriate
level of detail is selected based on viewing parameters. Such methods are overly restrictive and do not
take into account finer image-space feedback such as light position, visual acuity, silhouettes, and view
direction. Recent advances to address some of these issues in a view-dependent manner take advantage of
the temporal coherence to adaptively refine or simplify the polygonal environment from one frame to the
next. In particular, adaptive levels of detail have been used in terrains by Grosset al. [18] and Lindstromet
al. [26]. A number of techniques for conducting view-dependent simplifications of generalized polygonal
meshes rely on the primitive operations of vertex-split and edge collapse as shown in Figure 6. The edge(pc)
in the mesh on the left collapses to the vertexp and the resulting mesh is shown on the right. Conversely, the
vertexp in the mesh on the right can split to the edge(pc) to generate the mesh on the left. Let the vertex
p be considered the parent of the vertexc (asc is created fromp through a vertex split). The primitives of
vertex split and edge collapse were proposed in the context of progressive meshes [22].

Vertex Split

 Edge Collapse

n1n0

n2

n3n4

n5

n6

n0

n2

n3n4

n5

n6

c

p p

n1

Figure 6: Edge collapse and vertex split

View-dependent simplifications using the edge-collapse/vertex-split primitives include work by Xiaet
al. [39], Hoppe [23], and Gueziecet al. [19]. View-dependent simplifications by Luebke and Erikson [27],
and De Florianiet al. [8] do not rely on the edge-collapse primitive. Our work is most directly applicable
to view-dependent simplifications that are based upon the vertex-split/edge-collapse primitive; its extension

8

to more general view-dependent simplifications is a part of our planned future work. We next overview
a representative view-dependent simplification algorithm that is based onMerge Trees. In Section 5, we
use this algorithm and associated data-structures to explain updating of triangle strips in view-dependent
environments.

4.2 Merge Trees

Merge trees have been introduced by Xiaet al. [39] as a data-structure built upon progressive meshes [22]
to enable real-time view-dependent rendering of an object. As discussed earlier, let the vertexp in Figure 6
be considered the parent of the vertexc. Theneighborhoodof a vertexv is defined as the set of triangles
that are adjacent tov. The neighborhood of an edge(va; vb) is defined as the union of neighborhoods ofva
andvb. The merge tree is constructed in a bottom-up fashion from a high-detail mesh to a low-detail mesh
by storing these parent-child relationships (representing edge collapses) in a hierarchical manner over the
surface of an object. At each levell of the tree a maximal set of edge-collapses is selected in the shortest-
edge-first order and with the constraint that their neighborhoods do not overlap. The vertices remaining after
these edge collapses are promoted to levell + 1.

Active Nodes

Low Detail

High Detail

Figure 7: Varying detail in a Merge Tree

View-dependent simplification is achieved by performing edge-collapses and vertex-splits on the tri-
angulation used for display depending upon view-dependent parameters such as lighting (detail is directly
proportional to intensity gradient), polygon orientation, (high detail for silhouettes and low detail for back-
facing regions) and screen-space projection. This is shown in Figure 7. Since there is a high temporal
coherence the selected levels in the merge tree change only gradually from frame to frame. Unconstrained
edge-collapses and vertex-splits during runtime can be shown to result in mesh foldovers resulting in visual
artifacts such as shading discontinuities. To avoid these artifacts Xiaet al.propose the concept of dependen-
cies or constraints that necessitate the presence of the entire neighborhood of an edge before it is collapsed
(or its parent vertex is split). Thus, for the example shown in Figure 6, the neighborhood of edgepc should
consist exactly of verticesn0 : : :n6 for c to collapse top. Similarly, for the vertexp to split toc, the vertices
adjacent top should be exactly the setn0 : : :n6. Our current implementation of merge trees can construct
the merge tree for 69K triangles bunny model in10:3 seconds on an SGI Onyx 2.

4.3 Efficient Link Traversal

Let us study what happens when an edge collapses in a triangle strip. Figure 8 shows such a situation. As
can be seen, the results of an edge collapse can be represented by replacing all occurrences of the child
vertexc with the parent vertexp. In this example,c = 2 andp = 4.

The above example illustrates that to maintain triangle strips under view-dependent changes to the trian-
gle mesh connectivity, we should replace each vertex in a triangle strip by its nearest uncollapsed ancestor.
In an arbitrarily long sequence of such edge collapses, it is easy to see why efficient traversal of links to a
vertex’s ancestors becomes important.

9

1

2

3

4

5

1 2 3 4 5 6

6

1

2

3

4

5

1 2 3 2 5 6

6,

(a) (b)

collapse

Figure 8: Edge Collapse in a Triangle Strip

Skip list [33] has been proposed as an efficient probabilistic data-structure to store and retrieve data.
Skip lists can also be used for efficient compression of pointer paths. Consider a simple linked list as shown
in Figure 9(a). Reaching then-th node on this list requires O(n) pointer hops. Consider next a data-structure
that resembles a binary tree and has O(n) additional pointers that connect linked-list nodes that are2 away,4
away,: : :, 2logn away (refer Figure 9(b)). Using these additional pointers, any node on the linked list can be
accessed in O(logn) hops. Skip lists generate such additional pointers in a probabilistic manner to provide
the same O(logn) access time (refer Figure 9(c)), but in practice have been shown to be faster.

7 9 25 31 NIL34 39 56

7 9 17 25 31 NIL34 39 56

172

2

7 9 25 31 NIL34 39 56172

(a)

(b)

(c)
Figure 9: Skip list example

In a skip list, a node that hask forward pointers is a levelk node. The level of a node is determined in a
probabilistic manner. The search for an element is done by traversing forward pointers that do not overshoot
the required element. When no more progress is possible, the search moves down to the next level. This is
shown by the gray path in Figure 9(c) that searches for element with id-number56. To accomplish insertion
or deletion of an element in a skip list, a search is carried out for that element using the above method. A
vector of pointers is set up during this search that represents the set of pointers that are changed to implement
the insert or delete operation.

5 Skip Strips

In our approach we first generate a merge tree file as overviewed above in Section 4.2 and described in [39].
This file contains the parent-child relationships for each node of the tree. Even though our implementation
uses merge trees, the concept of Skip Strips is quite general and can be used in conjunction with other vertex-
collapse-based simplification schemes as well. We next generate the triangle strip representation of the

10

original polygonal model using any of the techniques for generating triangle strips as described in Section 3.
At run-time we load the merge tree and the triangle strip representations generated during preprocessing and
build theSkip Stripdata-structure on the fly. Then, depending on scene parameters such as eye position,
local illumination, front/back-facing regions, we perform vertex-split and edge-collapse operations directly
on the Skip Strips. The information from Skip Strips is then used to generate triangle strips for display.

5.1 Skip Strip Data-Structure

A Skip Strip is an array of Skip Strip nodes. Each Skip Strip node contains vertex information, a list of child
pointers and a parent pointer. We shall see in Section 5.3 how to generalize this data-structure to support a
list of parent pointers to accelerate access in a edge-collapse hierarchy. Exactly one of the child pointers is
marked as anactivechild pointer. This can be seen in Figure 10 where the parent pointers are shown on the
right and the list of child pointers is shown on the left of each Skip Strip node. Also, the parent pointer of
the node is markedactiveif this node has collapsed to its parent at a given stage of simplification; otherwise
it is markedinactive.

Vertex
Info pc

Vertex
Info pc

Vertex
Info pc

Vertex
Info pc

Collapse

Collapse

Collapse1

log nth

2

st

nd

Figure 10: A Skip Strip node

A Skip Strip is constructed at run time from the merge tree and the triangle strip representations. A
Skip Strip node is allocated for every merge tree node and then parent-child pointers are set up to mimic
the merge tree structure. In our current implementation we are assuming that a child vertexc collapses to a
parent vertexp. For this case, a Skip Strip node corresponding to a vertexp will have child pointers to all its
children, includingc, that collapse to it at different stages of simplification. In general, if there aren vertices
then the height of the merge tree isO(logn). Thus, the length of this child-pointer list for a Skip Strip node
could beO(logn). At a given time only one of these child pointers is flaggedactiveand represents the node
that will result from the most imminent split. Each Skip Strip node points to its immediate parent via the
parent pointer.

To illustrate the Skip Strip data-structure, let us see how it is built from a merge tree. Figure 11(a) shows
a hypothetical merge tree over four vertices 1 to 4. As in all the merge tree diagrams in this paper, the right
node is the child node and the left node is the parent node (as defined by Figure 6). The equivalent Skip
Strip data-structure will have four nodes representing the leaves of the merge tree (the highest detail vertices
in the original model). Since according to the merge tree vertex 2 can merge to vertex 1, the parent pointer
for the Skip Strip node 2 will point to Skip Strip node 1 and the child pointer for the node 1 will point to
node 2. Similarly the parent and child pointers of Skip Strip nodes 3 and 4 will be set. This stage is shown

11

1 2 3 4

1 3

1

(a)

1

2

3

4

1

2

3

4

(b) (c)

p

p

p

p

c

c c

c

p

p

p

p

c

c

c

c

Figure 11: Building a Simple Skip Strip

in Figure 11(b). The final structure in which node 3 merges with node 1 can be represented in the Skip Strip
as a parent pointer from node 3 to node 1 and a child pointer from node 1 to node 3. The completed Skip
Strip structure is shown in Figure 11(c).

The method that we have outlined above assumes that in an edge collapse fromc to p, the new vertex is
p. However, several other researchers have pointed out the advantage of creating new vertices during edge
collapses. These new vertices could be created for accomplishing geomorphs [22] or for better placement of
approximating vertices using sophisticated error metrics [17, 25]. For incorporating such simplification met-
rics into the framework of Skip Strips we suggest storing multiple coordinate sets, once per approximating
vertex, in the child pointer of the Skip Strip node.

5.2 Real-Time Adaptive Representation

Once the Skip Strip has been constructed it is easy to construct an adaptive level-of-detail mesh representa-
tion during run-time. Real-time adaptive mesh representation involves the determination of the vertices and
the triangle strips at the current level of detail. We shall refer to the vertices and triangle strips selected for
display at a given frame asdisplay verticesanddisplay strips.

The algorithm proceeds by first generating triangle strips for the input mesh at the highest resolution.
The Skip Strip data-structure generation outlined in Section 5.1 is independent of the generation of triangle
strips. At run-time the display vertices are determined using view- and illumination-dependent parameters.
This step is discussed in Section 5.2.1. The appropriate edge-collapses are performed on the set of original
triangle strips to generate a set of display strips. This is outlined in Section 5.2.2. The display strips are
determined incrementally and efficiently (Section 5.3) and are filtered (Section 5.4) before sending them to
the graphics processor.

5.2.1 Determination of display vertices

Determination of display vertices proceeds along the same lines as proposed in earlier work on view-
dependent simplification [39, 23] where image-space feedback is used to guide the selection of the level

12

of detail for the mesh. We determine which region of an object to simplify more and which to simplify less
using several parameters such as viewer location and orientation, local illumination, and front/back-facing
regions of an object. Similar to merge tree nodes, Skip Strips nodes also store aswitch valueto determine
whether to refine, merge, or leave a Skip Strip node in its current level. If the computed value of the view-
dependent error at a given nodev is less than theswitch valuestored at nodev, then nodev splits. If the
computed value is larger than theswitch valuestored at the parent of nodev, thenv merges.

In addition to the above criteria,each collapse and split also depends on the validity of the operation as
determined during the preprocessing to avoid artifacts such as mesh foldovers as explained earlier in Sec-
tion 4.2. One way to avoid such artifacts is to use dependencies [26, 39]. In [12], we have introduced the
concept of implicit dependencies that can test validity of edge collapse or vertex split in constant time. How-
ever, implicit dependencies rely on the existence of independent triangles that can be individually tagged.
Since in the Skip Strip data-structure we do not store triangles explicitly it is difficult to use implicit de-
pendencies. For Skip Strips we can use the traditional method of storing dependencies explicitly as a set
of adjacent nodes [39]. Instead, we have chosen to optimize the explicit dependencies by storing only that
subset of adjacent nodes that do not participate in an ancestor-child relationship, i.e. we do not include an
adjacent node in the dependency list if any of its ancestors is already in the list.

The execution of edge collapse and split operation is done in a small constant time (only integer incre-
ment and flag change or integer decrement and flag change) as follows. To perform a merge on the Skip
Strip we activate the parent pointer and increment the child index of the merged node by one, followed by
removing the merged node from the active nodes list. Split is done by deactivating the parent pointer and
decrementing child index of the split node by one. Then we insert the node pointed to by the previous child
index into the active nodes list. We have discovered that these simpler operations have reduced the time for
checking and performing a vertex split or edge collapse from around60�seconds to6�seconds.

5.2.2 Determination of display strips

Our scene is represented as a set of triangle strips. Each triangle strip has two representations – the original
highest resolution triangle strip that was generated using pre-processing and the Skip-Strip-derived run-time
representation of it that represents a triangle strip suitable for the current level of detail. We refer to the
former as aoriginal triangle strip and the latter as adisplay strip. At each frame we first perform view
dependent edge collapses/vertex splits as outlined in Section 5.2.1. Each time an edge collapses or vertex
splits, all display strips that contain that edge are flagged as modified. At the end of these simplifications if a
display strip remains unmodified it is used for rendering. However, if a display strip is modified we discard
it and begin generating its replacement by scanning each vertex in the corresponding original triangle strip.
Each vertex of the original triangle strip has a pointer to a corresponding node in a Skip Strip. For each
vertex’s node in the Skip Strip we check if its parent pointer is active or not. If the parent pointer is active
we follow the sequence of active parent pointers until we reach a node that has an inactive parent pointer.
The vertex information stored with the first node that has an inactive parent pointer is added to the new
display strip. After the new display strip has been completely generated it is sent to the graphics system for
display.

Let us next illustrate how the Skip Strips are used to split and collapse vertices of a triangle strip to
generate the display strips. Figure 12 shows the original mesh with vertices numbered1::10. The two
triangle strips representing this mesh are labeleda andb. Since no edges have collapsed, the display strips
are the same as the original triangle strips. Figure 13 shows the merge tree and the skip strip with one parent
pointer per node, constructed for the mesh in Figure 12 at the highest detail. Figure 14 shows the same after
two edge collapses (6! 5, and8 ! 7) to the mesh of Figure 12. In Figure 13 none of the parent pointers
is active (since there have been no edge collapses). In Figure 14, the parent pointers for nodes6 and8 that

13

1

2

3

5

6

4

8

9

7

10

a

b

Figure 12: Original triangle mesh

1 5 7 93

1 5

1

2

3

4

5

6

7

8

9

10

Triangle Strip a:

Triangle Strip b:

7 6 4 5 3 2 1

1 10 3 9 4 8 7

Display Strip a: 7 6 4 5 3 2 1

Display Strip b: 1 10 3 9 4 8 7

101 2 3 4 5 6 7 9

Id
p

c

8

Figure 13: Skip Strip for Triangle Mesh in Figure 12

1 93

1 5

1

2

3

4

5

7

9

10

Triangle Strip a:

Triangle Strip b:

7 6 4 5 3 2 1

1 10 3 9 4 8 7

Display Strip a: 7 5 4 5 3 2 1

Display Strip b: 1 10 3 9 4 7 7

5 6 7 8

5 7

101 2 3 4 9

Id
p

c

6

8

Figure 14: Skip Strip for Triangle Mesh in Figure 12 after two edge collapses

14

point to5 and7 respectively, are active and appear shaded.

5.3 Efficient Skipping for Parent pointers

As the object moves to a coarser representation, the time spent in following the active parent pointers in-
creases. The maximum number of active parent pointers that one might need to traverse isO(logn) – the
height of the vertex hierarchy. To reduce this time we trade off memory for speed. To accomplish this we
use ideas from path compression [36] and skip lists [33] to build a list of parent pointers for each Skip Strip
node that point to ancestors of this node that are1; 2; 4; 8; : : : ; logn away in the edge collapse hierarchy.
By using an efficient, skip-list-like pointer hopping scheme we can reduce this toO(log log n). Although
reducing aO(logn) factor might seem minor, in practice this results in an appreciable difference, especially
when we note that the merge tree height is generally a logarithm to the base5=4 [39]. Thus, even if the
edge-collapse-based vertex hierarchy tree is balanced (which often is not), the height for a tree over one
million vertices (and therefore the worst-case pointer hopping) will be 62 (� log1:25(10

6)) while a skip-
list-like pointer hopping scheme will only need to traverse 6 (� log2 62) pointers, an order of magnitude
improvement for present-day datasets.

In this scheme each Skip Strip node has an active parent field to indicate which pointer in the parent
list to follow to get closest to, without overshooting, the first active ancestor. We use a lazy update scheme
to modify the active parent field for each Skip Strip node. For this we make use of the fact that the vertex
hierarchy nodes are collapsed in an accordion-style fashion from high-detail to low-detail. In other words if
a vertexi collapses to vertexj, then it means thatall vertices that lie in the sub-tree rooted at vertexi have
already collapsed to vertexi. If the triangle strips reference one of the vertices in this sub-tree rooted ati and
if their active parent pointer overshootsj, then we need to decrement the active parent pointer till it points
to a node that is belowj (in other words has already collapsed). Because of a high temporal coherence,
these updates are few and each requires only one or two ancestor checks to find the “correct” ancestor that
does not overshoot the first active ancestor. Similarly, when a vertexj splits to verticesi andj we update all
pointers from triangle strips that point toj as the first active ancestor to point to a lower level ancestor. We
would like to point out that in this application, traversal of triangle strips requires that we access each vertex
of the triangle strip and therefore the overhead of such lazy updates of pointers to reflect split and collapse
in Skip Strips is minimal. Figure 13 shows the Skip Strip representation with multiple parent pointers, as
described above, for the mesh of Figure 12. The active parent pointers appear in bold lines.

5.4 Filtering Triangle Strips

As the model moves to coarser levels the triangle strips begin to accumulate identical vertices. Sending such
vertices multiple times is equivalent to sending degenerate triangles that do not contribute to the final scene
but add an overhead to the graphics rendering. To address this we filter the triangle strips while sending
them to the graphics engine. We have implemented a simple triangle strip scanner that detects and replaces
patterns of vertices of the regular expression form(aa)+ and(ab)+ from the sequence of vertices sent for
rendering and replaces them with(aa) or (ab) as appropriate.

6 Results

6.1 Triangle Strips

We have exhaustively tested our local and global algorithms on several datasets and compared them with
the best-known public-domain triangle strip code that we shall refer to as the SGI code [1]. For our local

15

1 5 7 93

1 5

1

2

3

4

5

6

7

8

9

10

Triangle Strip a:

Triangle Strip b:

7 6 4 5 3 2 1

1 10 3 9 4 8 7

Display Strip a: 7 6 4 5 3 2 1

Display Strip b: 1 10 3 9 4 8 7

101 2 3 4 5 6 7 8 9

Id
p

c

(a)

1 93

1 5

1

2

3

4

5

9

10

Triangle Strip a:

Triangle Strip b:

7 6 4 5 3 2 1

1 10 3 9 4 8 7

Display Strip a: 5 5 4 5 3 2 1

Display Strip b: 1 10 3 9 4 5 5

5 6 7 8

5 7

101 2 3 4 9

Id
p

c

8

7

6

(b)

Figure 15: More efficient Skip Strip representations for Figures 13 and 14

approaches there were ten different options for each data file that we ran our experiments on: (a) whole-
face triangulation and (b) partial-face triangulation, for each of the five tie breaking methods – (i) arbitrary,
(ii) look-ahead, (iii) alternate, (iv) random, and (v) sequential. For our global approaches there were ten
different options for each data file that we ran our experiments on: (a) row/column strips and (b) full-patch
strips, for each of five different patch cutoff sizes of – 5, 10, 15, 20, and 25.

After comparing the results we had from the above-mentioned20 different approaches on several datasets,
we found that the best option was to use the the global row or column strips with a patch cutoff size of 5. We
have implemented this option in our tool,StripeVersion 2.1. Table 1 compares the results for Stripe Version
2.1 against the SGI algorithm. For these results we are using the whole-face triangulation with sequential
tie-breaking method for the regions of the mesh that are not covered by the global patchification approach.
The cost columns show the total number of vertices required to represent the dataset in a generalized trian-
gle strip representation under the OpenGL cost model (where each swap costs one vertex). We should point
out that in our current implementation we are assuming that each polygon is convex. One can deal with

16

non-convex polygons by triangulating them first using one of several public-domain utilities [30, 21] or by
interleaving the triangulation with the generation of triangle strips as proposed in this paper.

Data File Vertices Triangles SGI Cost Stripe Cost % Savings
Air-Plane 1508 2992 4005 3571 10.8%

Skyscraper 2022 3692 5621 4849 13.8%
Triceratops 2832 5660 8267 7248 12.3%
Power lines 4091 8966 12147 10417 14.2%

Porsche 5247 10425 14227 12529 11.9%
Honda 7106 13594 16599 15060 9.3%

Bell ranger 7105 14168 19941 16892 15.3%
Dodge 8477 16646 20561 18920 8.0%
General 11361 22262 31652 28346 10.4%

Table 1: Comparison of triangle strip algorithms on representative models.

Figures 16, 17, and 18 show the performance comparisons between our best local and best global algo-
rithms against the SGI algorithm for (a) GL and (b) OpenGL cost models. In the GL cost model each swap
costs 1 bit (which we ignore) while in the OpenGL cost model each swap costs 1 vertex (since a vertex is
repeated). In these figures the models are sorted by number of triangles are along thex-axis and the cost of
generalized triangle strip representation is along they-axis. Observations from these graphs include:

Costs to the Renderer for GL

SGI data

Whole sequential

Extended cutoff 25

COST

TRIANGLES

3000

5000

10000

15000

20000

24000

5000 10000 15000 20000

Costs to the Renderer for OpenGL

SGI data

Partial sequential data

Extended cutoff 5

COST

TRIANGLES2000

5000

10000

15000

20000

25000

30000

32000

5000 10000 15000 20000

Figure 16: Overall cost comparisons for GL and OpenGL cost models.

� Little if any savings seems possible by sophisticated algorithms under the GL model. However, un-
der the more realistic model the combined local/global algorithm can save up to 15% over the SGI
algorithm.

� Our results are close to the theoretical lower bound of the number of triangles + 2, so there is limited
potential for better algorithms.

� Although the number of strips and number of swaps required is sensitive to the composition of the
model, the total cost grows linear in the size of the model.

17

Strips to the Renderer for GL

SGI data

Whole sequential

Extended cutoff 25

STRIPS

TRIANGLES
0

100

200

300

400

500

550

5000 10000 15000 20000

Strips to the Renderer for OpenGL

SGI data

Partial sequential data

Extended cutoff 5

STRIPS

TRIANGLES

50

100

200

300

400

500

600

700

5000 10000 15000 20000

Figure 17: Number of strips produced for GL and OpenGL cost models.

Swaps in the triangle strips for GL

SGI data

Whole sequential

Extended cutoff 25

SWAPS

TRIANGLES

500

1000

2000

3000

4000

5000

6000

7000

8000

8500

5000 10000 15000 20000

Swaps in the triangle strips for OpenGL

SGI data

Partial sequential data

Extended cutoff 5

SWAPS

TRIANGLES
0

1000

2000

3000

4000

5000

6000

7000

8000

8500

5000 10000 15000 20000

Figure 18: Total swaps produced for GL and OpenGL cost models.

18

Our times for execution of these algorithms behaved linearly with respect to the input size.Stripe
Version 2.1 [13] converts the 69K triangles bunny model into triangle strips in6 seconds on an SGI Onyx
2. When rendering the models with the triangle strips that were produced by each algorithm, the savings in
transmission time to the renderer did prove to be a significant savings in rendering time. The triangle strips
produced by our code were on average 30% faster to draw than those produced by the SGI algorithm, and
were about 60% faster to draw than without using triangle strips at all. These savings increased as the size
of the model increased, as shown in Table 2.

Machine File Triangles Raw Triangles SGI Tri-strips Stripe
SGI Indigo2 Triceratops 5660 0.50 0.3 0.27

Bell Ranger 14168 1.62 0.8 0.59
General 22262 2.52 1.2 0.88

PC- 150MHz Triceratops 5660 0.86 0.6 0.56
Bell Ranger 14168 1.93 1.2 1.00

General 22262 3.13 2.4 1.89

Table 2: Comparison of rendering times in seconds.

For local algorithms under the GL cost model whole-face triangulations worked better than those with
partial-face triangulations; under the OpenGL cost model the reverse was true. Partial-face triangulations
produce less swaps than whole-face triangulations because the former have a greater choice in selecting the
next face in a strip, and are therefore more likely to be able to select faces that do not require a swap. For
global algorithms, full-patch strips with cutoff size of 25 have the best performance under the GL cost model
whereas full-patch strips with a cutoff size of 5 have the best performance under the OpenGL cost model.
This is because a cutoff size of 5 generates more patches than a cutoff size of 25 and more patches means
lesser number of swaps. Figure 19 provides visual comparison of the results obtained by our tool Stripe and
those obtained by the earlier algorithm being used by SGI.

6.2 Impact of Buffer Size

The benefits realized by using triangle strips could be further enhanced by special-purpose hardware that
has additional buffer space (beyond the usual storage for two vertices) and alternate queuing disciplines. In
this section, we study the impact of such resources on performance, to provide guidance for future hardware
design. Increasing the buffer size from a capacity of two vertices naturally decreases the cost of transmission,
since we can now specify which of the previousk vertices in the buffer defines the next triangle. The cost
of specification becomesdlg ke bits, instead of number of bits representing one vertex, thus enabling us to
potentially represent polygonal models at a cost of less than one vertex per triangle. We ignore the costs of
these index bits, since we only seek to determine an upper bound potential improvement in rendering time
to assess whether it might be worth the increase in hardware costs. We considered two different queuing
disciplines for maintaining the buffer:

� First-in, first-out (FIFO)– This implies that there is no rearrangement of the vertices in the buffer, ex-
cluding swaps. FIFO is easiest to implement in hardware, and would thus be preferable if performance
is comparable.

� Least recently used (LRU)– LRU dynamically rearranges the vertices in the buffer, by placing a vertex
that was used most recently into the spot in the buffer that holds the most recently admitted vertex.
The least recently used vertex is replaced by the new vertex. LRU provides the benefit that popular
vertices are held in the buffer in the hope that they will likely be re-used.

19

SGI Stripe

SGI Stripe

SGI Stripe

SGI Stripe

Figure 19: Visual Comparison of Triangle Strips Generated by SGI and Stripe

20

Effects of changing the Buffer size for Triceratops

LRU

FIFO

MIN

COST

BUFFER

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

6600

3 10 30 100 300 1000

Effects of changing the Buffer size for General

LRU

FIFO

MIN

COST

BUFFER
11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

23000

24000

25000

26000

3 10 30 100 300 1000

Figure 20: Cost versus buffer size for two representative models.

We did our tests on several datasets. Two representative results are are presented in Figure 20. These
figures show the cost of the LRU and FIFO queuing disciplines (measured in number of vertices transmitted)
versus the dataset sizes (represented by the MIN curve). As can be seen the advantages to be gained from
larger buffer sizes diminish rapidly beyond a buffer size of about32. For this range of buffer sizes, LRU
performs better than the FIFO scheme by about10%.

6.3 Skip Strips

We have implemented Skip Strips and have obtained the results shown in Tables 3 and 4. All of these
results have been obtained on an SGI Onyx 2 with four R10000 processors, 1 GB RAM. Timings reported
here do not assume parallelization. Table 3 shows the comparison between rendering datasets using triangle
representation as in the conventional view-dependent rendering and rendering using Skip Strips. As can
be seen the number of vertices sent is substantially less for Skip Strips since they incrementally maintain
triangle strips that are used for final rendering.

Table 4 shows the advantage of using Skip Strips over recomputing triangle strips at every frame. As
can be seen from this table, recomputing triangle strips results in fewer vertices being sent as compared to
those using Skip Strips. However, the total cost of recomputing triangle strips along with the time for their
display far exceeds the cost of maintaining, updating, and displaying triangle strips using Skip Strips. All
times reported below are wall clock times (not CPU times).

The datasets used for the above results appear in Figures 21, 22, and 23. In these figures, parts (a) show
an intermediate level of view-dependent simplification, while parts (b), (c), and (d) show how the triangle
strips are maintained across different levels of detail using Skip Strips. Colors in parts (a) depict object
colors whereas colors in parts (b), (c), and (d) denote different triangle strips.

21

(a) 30K triangles (b) 5K triangles (c) 30K triangles (d) 65K triangles
Figure 21: Skip strips across varying resolutions for the Stanford Bunny model

(a) 255K triangles (b) 32K triangles (c) 255K triangles (d) 522K triangles
Figure 22: Skip strips across varying resolutions for the Terrain dataset

(a) 170K triangles (b) 65K triangles

(c) 170K triangles (d) 340K triangles

Figure 23: Skip strips across varying resolutions for the Auxilliary Machine Room dataset

22

Frame Triangles Skip Strips
Dataset Tris Display Verts Display Verts

(msec) Sent (msec) Sent
10.2K 27.1 30.6K 16.0 22K

Bunny 50.8K 120.1 152.4K 78.1 83K
69.4K 166.1 208.2K 101.0 92K
71.4K 129.0 214.2K 103.0 160K

Terrain 255.5K 651.2 766.5K 401.2 480K
522.2K 1573.5 1566.6K 991.3 550K
90.4K 134.1 271.2K 103.1 181K

AMR 180.6K 385.4 541.8K 213.7 320K
340.2K 573.1 1020.6K 297.4 491K
107.8K 256.2 323.4K 204.1 205K

Dragon 445.5K 850.3 1336.5K 611.2 800K
871.3K 1908.2 2613.9K 1184.5 1280K

Table 3: Comparison between Raw Triangles and Skip Strips for Rendering

Triangles Strips Skip Strips
Dataset in Frame Construction Display Vertices Triangle Strip Display Vertices

(msec) (msec) Sent Updates (msec) (msec) Sent
5K 310 4.6 8K 5.3 6.4 10K

Bunny 30K 2120 23.1 35K 13.1 30.3 42K
65K 5310 84.6 90K 25.2 85.2 90K
32K 2190 54.3 60K 15.2 78.4 90K

Terrain 255K 24630 370.5 411K 150.3 401.2 480K
522K 131070 450.3 550K 230.0 460.3 550K
65K 4100 72.4 80K 32.3 101.3 130K

AMR 170K 14300 173.2 268K 60.8 201.4 300K
340K 35810 291.5 491K 101.2 297.4 491K

Table 4: Computing Triangle Strips per frame versus Skip Strips

7 Conclusions

We have explored a total of twenty different local and global algorithms on over two hundred data models
in our quest for an effective triangle strip generation algorithm that can perform well under the prevalent
OpenGL cost model. Our conclusion is that the best approach for the OpenGL cost model is global row or
column strips with a patch cutoff size of 5. Source code for Stripe 2.1 is freely available for non-commercial
use fromhttp://www.cs.sunysb.edu/\simstripe.html . As can be seen from the results
of Table 1, we are able to outperform the SGI algorithm significantly. We typically produce a significantly
lower number of strips than they do (usually 60%-80% less using the local whole-triangulation algorithm),
resulting in an average cost savings of about 15% less than SGI algorithm under the OpenGL model. Further,
our cost averages just 10% more than the theoretical minimum of using one sequential strip with no swaps,
when using the global row or column strips algorithm with a patch cutoff size of 5, as shown in Figure
16. We have found that using global algorithms for detecting large strips of quads proves very effective for
reducing swaps. This has proved to be quite useful for generating efficient triangle strips for the OpenGL

23

cost model where every swap costs one vertex.
All our algorithms run in linear time. Although the SGI algorithm does have a slightly better running

time, we do not believe this to be a serious drawback of our approach since the triangle-strip generation
phase is typically done off-line before interactive visualization. Also, our algorithm can take as input a
polygonal model, while the SGI algorithm cannot handle polygonal data. Therefore to use their algorithm,
the user needs to first pre-triangulate the data model, which is an extra step not added into the SGI running
time.

The results of our experiments with larger buffer sizes offer only limited room for optimism. As we
increase the buffer-size the savings do increase, however the improvements diminish very quickly. LRU
seems to work much better than FIFO in the smaller buffers, although this must be contrasted with the time
and hardware needed to maintain a LRU buffer. As indicated by our results, making a choice of a small
buffer size, say around32 seems attractive.

We have shown how Skip Strips can provide a convenient and simple representation to integrate retained-
mode data-structures such as triangle strips with immediate-mode view-dependent simplifications. The Skip
Strips offer two main advantages. First, they make pointer hopping along parent links in any hierarchical
vertex collapse scheme efficient. Second, they simplify the execution of the vertex split and edge collapse
operations to be as simple as two integer increment or decrement operations.

Skip Strips provide the advantage of hardware-assisted acceleration to view-dependent simplifications.
However, they also suffer from some of the same limitations that afflict triangle strips. Thus, Skip Strip
performance will not be very good for datasets that have several discontinuities in surfaces (cracks, holes,
T-junctions), normals, colors, and textures. For such datasets the triangle strips that are generated have to
be split across such surface attribute discontinuities thereby limiting their efficacy in succinctly representing
the polygonal mesh. Although this does affect overall performance, the results will likely still be better than
rendering raw triangles.

Another issue to consider is the performance of Skip Strips over genus-reducing simplifications. Our
preliminary results indicate that Skip Strips are also applicable to view-dependent genus-reducing simplifi-
cations; we need to test this further.

Acknowledgements

This work has been supported in part by the NSF grants:CCR-9502239,CCR-9625669, DMI-9800690,
ACR-9812572, ONR Awards: 400x116yip01, N00149710589, and a DURIP award N00014970362. Jihad
El-Sana has been supported in part by the Fulbright/Israeli Arab Scholarship Program and the Catacosinos
Fellowship for Excellence in Computer Science. Figure 23 shows the Auxiliary Machine Room part from
the dataset of a notional submarine provided to us by the Electric Boat Division of General Dynamics. We
would like to thank the reviewers for their insightful comments which led to several improvements in the
presentation of this paper.

References

[1] K. Akeley, P. Haeberli, and D. Burns. tomesh.c : C Program on SGI Developer’s Toolbox CD, 1990.

[2] E. Arkin, M. Held, J. Mitchell, and S. Skiena. Hamiltonian triangulations for fast rendering. InSecond
Annual European Symposium on Algorithms, volume 855, pages 36–47. Springer-Verlag Lecture Notes
in Computer Science, 1994.

24

[3] E. Arkin, M. Held, J. Mitchell, and S. Skiena. Hamiltonian triangulations for fast rendering.Visual
Computer, 12(9):429–444, 1996.

[4] R. Bar-Yehuda and C. Gotsman. Time/space tradeoffs for polygon mesh rendering.ACM Transactions
on Graphics, 15, no. 2:141–152, 1996.

[5] P. Bhattacharya and A. Rosenfeld. Polygonal ribbons in two and three dimensions. Technical report,
Department of Computer Science, University of Maryland, 1994.

[6] J. Bose and G. Toussaint. No quadrangulation is extremely odd. Technical Report 95-03, Department
of Computer Science, University of British Columbia, 1995.

[7] M. Chow. Optimized geomerty compression for real-time rendering. InIEEE Visualization ’97 Pro-
ceedings, pages 403 – 410. ACM/SIGGRAPH Press, October 1997.

[8] L. De Floriani, P. Magillo, and E. Puppo. Efficient implementation of multi-triangulation. In H. Rush-
meier D. Elbert and H. Hagen, editors,Proceedings Visualization ’98, pages 43–50, October 1998.

[9] M. F. Deering. Geometry compression. In Robert Cook, editor,SIGGRAPH 95 Conference Proceed-
ings, Annual Conference Series, pages 13–20. ACM SIGGRAPH, Addison Wesley, August 1995. held
in Los Angeles, California, 06-11 August 1995.

[10] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, and C. Aldrich an M. Mineev-Weinstein. Roaming
terrain: Real-time optimally adapting meshes. InProceedings of the IEEE Visualization ’97, pages 81
– 88. ACM/SIGGRAPH Press, October 1997.

[11] J. El-Sana, E. Azanli, and A. Varshney. Skip strips: Maintaining triangle strips for view dependent
rendering. InIEEE Visualization ’99 Proceedings, pages 131 – 138. ACM/SIGGRAPH Press, October
1999.

[12] J. El-Sana and A. Varshney. Generalized view-dependent simplification.Computer Graphics Forum,
18, No. 6, 1999.

[13] F. Evans, E. Azanli, S. Skiena, and A. Varshney. Stripe Version 2.0, http://www.cs.sunysb.edu/�stripe.

[14] F. Evans, S. Skiena, and A. Varshney. Optimizing triangle strips for fast rendering. InIEEE Visualiza-
tion ’96 Proceedings, pages 319 – 326. ACM/SIGGRAPH Press, October 1996.

[15] F. Evans, S. Skiena, and A. Varshney. Efficiently generating triangle strips for fast rendering. Technical
report, Department of Computer Science, State University of New York at Stonyt Brook, Stony Brook,
NY 11794-4400, USA, March 1997.

[16] T. A. Funkhouser and C. H. S´equin. Adaptive display algorithm for interactive frame rates during
visualizationof complex virtual environments. InProceedings of SIGGRAPH 93 (Anaheim, California,
August 1–6, 1993), Computer Graphics Proceedings, Annual Conference Series, pages 247–254. ACM
SIGGRAPH, August 1993.

[17] M. Garland and P. Heckbert. Surface simplification using quadric error metrics. InProceedings of
SIGGRAPH ’97 (Los Angeles, CA), Computer Graphics Proceedings, Annual Conference Series, pages
209 – 216. ACM SIGGRAPH, ACM Press, August 1997.

[18] M. H. Gross, R. Gatti, and O. Staadt. Fast multiresolution surface meshing. In G. M. Nielson and
D. Silver, editors,IEEE Visualization ’95 Proceedings, pages 135–142, 1995.

25

[19] A. Gueziec, F. Lazarus, G. Taubin, and W. Horn. Surface partitions for progressive transmission and
display, and dynamic simplification of polygonal surfaces. In S. N. Spencer, editor,Proceedings VRML
98: third Symposium on the Virtual Reality Modeling Language, Monterey, California, February 16–
19, 1998, pages 25–32, New York, NY, USA, 1998. ACM Press.

[20] S. Gumhold and W. Straßer. Real time compression of triangle mesh connectivity. InSIGGRAPH 98
Conference proceedings, Annual Conference Series, pages 133–140. ACM SIGGRAPH, 1998.

[21] M. Held. Efficient and reliable triangulation of polygons. InProceedings of Computer Graphics
International, pages 633–643, 1998.

[22] H. Hoppe. Progressive meshes. InProceedings of SIGGRAPH ’96 (New Orleans, LA, August 4–
9, 1996), Computer Graphics Proceedings, Annual Conference Series, pages 99 – 108. ACM SIG-
GRAPH, ACM Press, August 1996.

[23] H. Hoppe. View-dependent refinement of progressive meshes. InProceedings of SIGGRAPH ’97 (Los
Angeles, CA), Computer Graphics Proceedings, Annual Conference Series, pages 189 – 197. ACM
SIGGRAPH, ACM Press, August 1997.

[24] H. Hoppe. Optimization of mesh locality for transparent vertexcaching. InProceedings of SIGGRAPH
’99 (Los Angeles, CA, August 8–13, 1999), Computer Graphics Proceedings, Annual Conference Se-
ries, pages 269 – 276. ACM Siggraph, ACM Press, August 1999.

[25] P. Lindstrom and G. Turk. Fast and memory efficient polygonal simplification. In D. Ebert, H. Rush-
meier, and H. Hagen, editors,Proceedings Visualization ’98, pages 279–286, October 1998.

[26] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hughes, Nick Faust, and Gregory Turner.
Real-Time, continuous level of detail rendering of height fields. In Holly Rushmeier, editor,SIG-
GRAPH 96 Conference Proceedings, Annual Conference Series, pages 109–118. ACM SIGGRAPH,
Addison Wesley, August 1996.

[27] D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygonal environments. InPro-
ceedings of SIGGRAPH ’97 (Los Angeles, CA), Computer Graphics Proceedings, Annual Conference
Series, pages 198 – 208. ACM SIGGRAPH, ACM Press, August 1997.

[28] T. Mitra and T. Chiueh. A breadth-first approach to efficient mesh traversal. In1998 Eurograph-
ics/Siggraph Workshop on Graphics Hardware, pages 31–38, 1998.

[29] G. Narasimhan. On Hamiltonian triangulations in simple polygons. InProceedings of the Fifth MSI-
Stony Brook Workshop on Computational Geometry, page 15, October 1995.

[30] A. Narkhede and D. Manocha. Fast polygon triangulation based on seidel’s algorithm.Graphics Gems
5, pages 394–397, 1995.

[31] Open GL Architecture Review Board.OpenGL Reference Manual. Addison-Wesley Publishing Com-
pany, Reading, MA, 1993.

[32] Open GL Architecture Review Board, J. Neider, T. Davis, and M. Woo.OpenGL Programming Guide.
Addison-Wesley Publishing Company, Reading, MA, 1993.

[33] W. Pugh. Skip lists: A probabilitics alternative to balanced trees.Communications of the ACM,
33(6):668–678, 1990.

26

[34] J. Rossignac. Edgebreaker: Connnectivity compression for triangle meshes.IEEE Transactions on
Visualization and Computer Graphics, 5(1), January 1999.

[35] B. Speckmann and J. Snoeyink. Easy triangle strips for tin terrain models. InProceedings of the
Canadian Conference on Computational Geometry, pages 239 – 244, 1997.

[36] R. E. Tarjan. Data structures and network algorithms. InRegional Conference Series in Applied
Mathematics, volume 44 ofCBMS-NFS. SIAM, 1983.

[37] G. Taubin, A. Gu´eziec, W. Horn, and F. Lazarus. Progressive forest split compression. InSIGGRAPH
98 Conference Proceedings, Annual Conference Series, pages 123–132. ACM SIGGRAPH, 1998.

[38] L. Velho, L. de Figueiredo, and J. Gomes. Hierarchical generalized triangle strips.The Visual Com-
puter, 15(1):21 – 35, 1999.

[39] J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based rendering for polygonal
models.IEEE Transactions on Visualization and Computer Graphics, 3, No. 2:171 – 183, June 1997.

[40] X. Xiang, M. Held, and Joseph S. B. Mitchell. Fast and effective stripification of polygonal surface
models. InACM Symposium on Interactive 3D Graphics, pages 71–78, 1999.

27

